
Study of stepwise simulation between ASMs

Patrick Cegielski Julien Cervelle

JAF 37 • Florence • 2018-05-29

LACL • Université Paris-Est Créteil

ASMs

𝐴 = ⟨𝐷, 𝑆, 𝑉 , 𝑃 ⟩
▸ 𝐷 is the domain

▸ 𝑆 are the static symbols

▸ ⟨𝐷, 𝑆⟩ forms an algebra

▸ 𝑉 are the dynamic symbols

▸ 𝑃 is the program

A subset 𝐼 ⊂ 𝑉 are the input symbols
⊥ ∈ 𝐷 is a special value

𝑃 is a loop of instructions 𝜑 ⟹ 𝑎
▸ 𝜑 is a quantifier-free formula of

ℒ(𝑆 ∪ 𝑉 ∪ {undef})
▸ 𝑎 is an assignment s(̅𝑡) ∶= 𝑣

▸ s is a dynamic symbols of arity | ̅𝑡|
▸ 𝑣 and ̅𝑡 are terms of

ℒ(𝑆 ∪ 𝑉 ∪ {undef})

Instructions in the loop are executed in parallel and must be non contradictory

ASM halts on fixpoint

1

Trace

The state of an ASM is the values stored in its dynamic symbols.

The initial state for an ASM on input 𝑥 is such that

▸ The input symbols are filled with 𝑥
▸ The other dynamic symbols are filled with ⊥

The trace of ASM 𝐴 on input 𝑥: 𝑡0, 𝑡1, …, 𝑡𝑛, …

▸ 𝑡0 = the state of 𝐴 initialized with 𝑥
▸ 𝑡𝑖+1 = the state after one step of 𝐴 from state 𝑡𝑖

▸ If the run halts, the last element is halting (fix point)

▸ Otherwise the trace is infinite

2

Simulation

ASM were introduced as a universal algorithm model

Any sequential algorithm is simulated by an ASM

▸ 1 − 1 simulation: one step of the ASM = one step of the algorithm

▸ 𝑛 − 1 simulation: exactly 𝑛 steps of the ASM = one step of the algorithm

Often, the ASM is padded with “skip” instructions to reach 𝑛 steps

𝑛 weak simulation: at most 𝑛 steps of the ASM = one step of the algorithm

Question: could one use weak simulation?

3

Example: classic simulation

x:=⊥ ⟹ x:=1
x:=1 ⟹ x:=2
x:=2 ⟹ x:=5
x:=5 ⟹ x:=1

s≠9∧s≠⊥ ⟹ s:=s+1
s=9∨s=⊥ ⟹ s:=1
s=2 ⟹ x:=1
5⩽s⩽8 ⟹ x:=x+1

x
⊥
1
2
5
1
⋮

s x s x
⊥ ⊥ 7 3
1 ⊥ 8 4
2 ⊥ 9 5
3 1 1 5
4 1 2 5
5 1 3 1
6 2 ⋮

4

Example: weak simulation

x:=⊥ ⟹ x:=1
x:=1 ⟹ x:=2
x:=2 ⟹ x:=5
x:=5 ⟹ x:=1

x≠5∧x≠⊥ ⟹ x:=x+1
x=5∨x=⊥ ⟹ x:=1

x
⊥
1
2
5
1
⋮

x
⊥
1
2
3
4
5
1
⋮

5

Motivation

▸ Intuitively, with weak simulation, simulated machine can compute more than the
simulating machine

▸ Weak simulation need an oracle to tell when a simulating step is reached

▸ The oracle can be described by the set of index to remove from the simulating trace to
get only the simulating steps

▸ Question: can we find a case where these oracle are “non-computable” while the ASM use
only computable elements?

6

Formalization

Let 𝐴 and 𝐵 be two ASMs where 𝐵 𝑛-weak-simulates 𝐴

𝐴 and 𝐵 must have the same domain, the dynamic symbols of 𝐵 greater or equal the one of
𝐴, and the same input set

Let 𝑡𝐴(𝑥) and 𝑡𝐵(𝑥) be the traces of 𝐴 and 𝐵 on input 𝑥

We call witness for this weak-simulation a set 𝑊𝑥 ⊆ ℕ such that:

1. 𝑡𝐴(𝑥) = 𝑉 ∗,𝜔
𝐴 ∩ 𝑡𝐵(𝑥) ↾𝑊𝑥

∁ (simulation)

2. no interval grater than 𝑛 − 1 is included in 𝑊𝑥 (𝑛-weak)

7

Lower bound : Computable

Definition

An ASM is arithmetic if:

▸ it’s domain is ℕ
▸ all members of the algebra are computable

Proposition

Let 𝐴 and 𝐵 be two arithmetic ASMs. If 𝐴 is 𝑛-weakly simulated by 𝐵 then
𝒲 = {𝑊𝑥 ∣ 𝑥 halting input for 𝐴} is computable.

Proof: The Turing machine recover the input and simulates 𝐴 and 𝐵 in parallel on input 𝑥 and
once finished, it outputs 𝑊𝑥 .

8

Upper bound : Undecidable

Proposition

There exists some arithmetic ASMs 𝐴 and some non-arithmetic 𝐵 such that 𝑊∅ is not recursive.

n=⊥ ⟹ m:=0∧n:=1
n≠⊥ ⟹ n:=n+1
n ⊥ 1 2 3 4 5 6
m ⊥ 0 0 0 0 0 0

n=⊥ ⟹ m:=0∧n:=1
n is even ∧ f(n/2)=1 ⟹ m:=1
m=1 ⟹ m:=0∧n:=n+1
n is even ∧ f(n/2)=0 ⟹ n:=n+1
n is odd ⟹ n:=n+1
n ⊥ 1 2 2 3 4 5 6 6
m ⊥ 0 0 1 0 0 0 0 1

where 𝑓 is the characteristic funtion of some non-computable set (in the example,
𝑓(1) = 𝑓(3) = 1 and 𝑓(2) = 0).

9

Main result

Theorem

There exists some arithmetic ASMs 𝐴 and 𝐵 such that 𝒲 = {𝑊𝑥 ∣ 𝑥 input for 𝐴} contains only
finite sets and is non-computable.

Proof: Both perform the following steps but when 𝑐 reached 0, some ASM 𝐾 is executed and
in parallel on the same input.

s=⊥ ⟹ c:=input+1∧s:=0
s=1∧c>0 ⟹ c:=c-1
c=0∧¬KHasHalted ⟹ s:=s+1

s=⊥ ⟹ c:=input+1∧s:=1
s=1∧c>1 ⟹ c:=c-1
s=1∧c=1∧m=⊥ ⟹ m:=1
s=1∧c=1∧m=1 ⟹ m:=⊥∧c:=0
c=0∧¬KHasHalted ⟹ s:=s+1
c=0∧KHasHalted ⟹ m:=1

Where 𝐾 is some ASM which has non computable halting set

10

Proof

When input= 6, 𝐾 does not halt:

𝑐 ⊥ 7 6 5 4 3 2 1 0 0 0 0 0 0 ⋯
𝑚 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯
𝑑 ⊥ 0 0 0 0 0 0 0 0 1 2 3 4 5 ⋯
𝐾 𝐾0 𝐾1 𝐾2 𝐾3 𝐾4 …
𝑐 ⊥ 7 6 5 4 3 2 1 1 0 0 0 0 0 0 ⋯
𝑚 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯
𝑑 ⊥ 0 0 0 0 0 0 0 0 0 1 2 3 4 5 ⋯
𝐾 𝐾0 𝐾1 𝐾2 𝐾3 𝐾4 …

When 𝐾 does not halt on input 𝑥, 𝑊𝑥 is the singleton {𝑥 + 2}

11

Proof

When input= 5, 𝐾 halts after 3 step:

𝑐 ⊥ 6 5 4 3 2 1 0 0 0 0 0]
𝑚 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥]
𝑑 ⊥ 0 0 0 0 0 0 0 1 2 3 4]
𝐾 𝐾0 𝐾1 𝐾2 𝐾3]
𝑐 ⊥ 6 5 4 3 2 1 1 0 0 0 0 0 0]
𝑚 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ 1]
𝑑 ⊥ 0 0 0 0 0 0 0 0 1 2 3 4 4]
𝐾 𝐾0 𝐾1 𝐾2 𝐾3 𝐾3]

When 𝐾 halts on input 𝑥, 𝑊𝑥 is a pair.

The enumeration of 𝒲 allows to enumerate the halting set of 𝐾 and its complement and
thus decide 𝐾.

12

Conclusion

We confirm that simulation cannot be replaced by weak-simulation

Also, instead of padding with “skip”, one can add a special dymamic boolean symbol “sim” set
to true only for simulating steps

13

