Study of stepwise simulation between ASMs

Patrick Cegielski Julien Cervelle JAF 37 • Florence • 2018-05-29

LACL • Université Paris-Est Créteil

- $A=\langle D,S,V,P\rangle$
 - ▶ *D* is the domain
 - \triangleright *S* are the static symbols
 - $ightarrow \langle D,S
 angle$ forms an algebra
 - ▶ *V*are the dynamic symbols
 - ▶ *P* is the program
- A subset $I \subset V$ are the input symbols
- $\bot \in D$ is a special value

P is a loop of instructions $arphi \Longrightarrow a$

- φ is a quantifier-free formula of $\mathcal{L}(S \cup V \cup \{ \texttt{undef} \})$
- a is an assignment $\mathbf{s}(\bar{t}):=v$
 - s is a dynamic symbols of arity $|\overline{t}|$
 - v and \overline{t} are terms of $\mathcal{L}(S \cup V \cup \{ \text{undef} \})$

Instructions in the loop are executed in parallel and must be non contradictory

ASM halts on fixpoint

The **state** of an ASM is the values stored in its *dynamic* symbols.

The **initial state** for an ASM on input x is such that

- \blacktriangleright The input symbols are filled with x
- \blacktriangleright The other dynamic symbols are filled with ot

The trace of ASM A on input x: $t_0, t_1, ..., t_n, ...$

- t_0 = the state of A initialized with x
- t_{i+1} = the state after one step of A from state t_i
- ▶ If the run halts, the last element is halting (fix point)
- Otherwise the trace is infinite

ASM were introduced as a universal algorithm model

Any sequential algorithm is simulated by an ASM

- 1 1 simulation: one step of the ASM = one step of the algorithm
- n-1 simulation: exactly n steps of the ASM = one step of the algorithm

Often, the ASM is padded with "skip" instructions to reach n steps

n weak simulation: at most *n* steps of the ASM = one step of the algorithm

Question: could one use weak simulation?

Example: classic simulation

- $\times:=\perp \Longrightarrow \times:=1$
- $\times :=1 \Longrightarrow \times :=2$
- $\times := 2 \Longrightarrow \times := 5$
- $\times :=5 \Longrightarrow \times :=1$

 $s \neq 9 \land s \neq \bot \implies s := s+1$ $s = 9 \lor s = \bot \implies s := 1$ $s = 2 \implies x := 1$ $5 \leqslant s \leqslant 8 \implies x := x+1$

S	X	S	\times
	\perp	$\overline{7}$	3
1	\perp	8	4
2	\perp	9	5
3	1	1	5
4	1	2	5
5	1	3	1
6	2		

Example: weak simulation

 $\begin{array}{c} \times := \bot \Longrightarrow \times := 1\\ \times := 1 \Longrightarrow \times := 2\\ \times := 2 \Longrightarrow \times := 5\end{array}$

 $x:=5 \implies x:=1$

 $x \neq 5 \land x \neq \bot \Longrightarrow x := x+1$ $x = 5 \lor x = \bot \Longrightarrow x := 1$

×

12345

- Intuitively, with weak simulation, simulated machine can compute more than the simulating machine
- > Weak simulation need an oracle to tell when a simulating step is reached
- ► The oracle can be described by the set of index to remove from the simulating trace to get only the simulating steps
- Question: can we find a case where these oracle are "non-computable" while the ASM use only computable elements?

Let A and B be two ASMs where B n-weak-simulates A

A and B must have the same domain, the dynamic symbols of B greater or equal the one of A, and the same input set

Let $t_A(x)$ and $t_B(x)$ be the **traces** of A and B on input x

We call witness for this weak-simulation a set $W_x\subseteq\mathbb{N}$ such that:

I. $t_A(x) = V_A^{*,\omega} \cap t_B(x) \upharpoonright_{W_{\pi}^{\circ}}$ (simulation)

2. no interval grater than n-1 is included in W_x (*n*-weak)

Lower bound : Computable

Definition

An ASM is arithmetic if:

- ▶ it's domain is N
- all members of the algebra are computable

Proposition

Let A and B be two arithmetic ASMs. If A is n-weakly simulated by B then $\mathcal{W}=\{W_x\mid x \text{ halting input for } A\} \text{ is computable}.$

Proof: The Turing machine recover the input and simulates A and B in parallel on input x and once finished, it outputs W_x .

Proposition

There exists some arithmetic ASMs A and some non-arithmetic B such that W_{\emptyset} is not recursive.

 $n=\perp \implies m:=0 \land n:=1$ $n\neq\perp \implies n:=n+1$ $n \implies 1 = 2 = 3 = 4 = 5 = 6$ $m \implies 1 = 0 = 0 = 0 = 0 = 0$ $n \implies n:=0 \land n:=n+1$ $n \implies 0 = 0 = 1 = 0 = 0 = 0 = 0$

where f is the characteristic function of some non-computable set (in the example, f(1) = f(3) = 1 and f(2) = 0).

Main result

Theorem

There exists some arithmetic ASMs A and B such that $\mathcal{W} = \{W_x \mid x \text{ input for } A\}$ contains only finite sets and is non-computable.

Proof: Both perform the following steps but when c reached 0, some ASM K is executed and in parallel on the same input.

 $c=0 \land \neg KHasHalted \implies s:=s+1$

 $s=\bot \implies c:=input+1\land s:=1$ $s=1\land c>1 \implies c:=c-1$ $s=1\land c=1\land m=\bot \implies m:=1$ $s=1\land c=1\land m=1 \implies m:=\bot\land c:=0$ $c=0\land \neg K HasHalted \implies s:=s+1$ $c=0\land K HasHalted \implies m:=1$

Where K is some ASM which has non computable halting set

When K does not halt on input x, W_x is the singleton $\{x + 2\}$

···· ···· When input = 5, K halts after 3 step:

c	\perp	6	5	4	3	2	1	0	0	0	0	0]		
m	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	1		
d	\perp	0	0	0	0	0	0	0	1	2	3	4	1		
K									K_0	K_1	K_2	K_3]		
~		6	5	1	- 9	9	1	1	0	0	0	0	0	0	
c	Ť	6	5	4	3	2	1	1	0	0	0	0	0	0	
${c \over m}$	\perp	${\stackrel{6}{\perp}}$	$5 \\ \perp$	4 \perp	$rac{3}{\perp}$	$\overset{2}{\perp}$	$\stackrel{1}{\perp}$	$\frac{1}{1}$	$\stackrel{0}{\perp}$	$\stackrel{0}{\perp}$	$\stackrel{0}{\perp}$	$\stackrel{0}{\perp}$	0 \perp	$\begin{array}{c} 0 \\ 1 \end{array}$	
$c \\ m \\ d$		$egin{array}{c} 6 \ ot \\ 0 \end{array}$	$5 \\ \perp \\ 0$	$\begin{array}{c} 4 \\ \bot \\ 0 \end{array}$	$\begin{array}{c} 3 \\ \bot \\ 0 \end{array}$	$\begin{array}{c} 2 \\ \bot \\ 0 \end{array}$	$\begin{array}{c} 1 \\ \bot \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ \bot \\ 0 \end{array}$	$egin{array}{c} 0 \ ot \ 1 \ \end{array}$	$\begin{array}{c} 0 \ \bot \ 2 \end{array}$	$\begin{array}{c} 0 \\ \bot \\ 3 \end{array}$	$\begin{array}{c} 0 \\ \bot \\ 4 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 4 \end{array}$	

When K halts on input x, W_x is a pair.

The enumeration of \mathcal{W} allows to enumerate the halting set of K and its complement and thus decide K.

We confirm that simulation cannot be replaced by weak-simulation

Also, instead of padding with "skip", one can add a special dymamic boolean symbol "sim" set to true only for simulating steps